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8 Abstract 

Extreme heat under global warming is a concerning issue for the growing tropical population. 

However, model projections of extreme temperatures, a widely used metric for extreme heat, 

are uncertain on regional scales. In addition, humidity also needs to be taken into account 

in order to estimate the health impact of extreme heat. Here we show that an integrated 

temperature-humidity metric for the health impact of heat, namely the extreme wet-bulb 

temperature (TW), is controlled by established atmospheric dynamics and thus can be ro-

bustly projected on regional scales. For each 1◦C of tropical mean warming, global climate 

models project extreme TW (the annual maximum of daily-mean or 3-hourly values) to in-

crease roughly uniformly between 20◦S and 20◦N latitude by about 1◦C. This projection is 

consistent with theoretical expectation based on tropical atmospheric dynamics, and obser-

vations over the past 40 years, which gives confidence to the model projection. For a 1.5◦C 

warmer world, the likely (66 per cent confidence interval) increase of regional extreme TW 

is projected to be 1.33-1.49◦C, whereas the uncertainty of projected extreme temperatures is 

3.7 times as large. These results suggest that limiting global warming to 1.5◦C will prevent 

most of the tropics from reaching a TW of 35◦C, the limit of human adaptation. 
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24 Main 

25 The impact of global warming on local extreme heat is projected to be detectable earliest in 

26 the tropics1–3 where baseline temperatures are already high. In addition, countries located 

27 between 20◦S and 20◦N latitude will soon become major contributors to the global population 

28 growth,4 and there is thus a pressing need for accurate projections of extreme heat in the 

29 tropics down to regional scales. 

30 The most widely used metric for extreme heat has been the extreme temperature. How-

31 ever, projections of extreme temperatures have large regional uncertainty arising from in-

32 sufficient model representation of important land processes.5 Moreover, to facilitate the 

33 estimation of heat-induced health impact (or heat stress), the effect of humidity should also 

34 be included,6, 7 and this is because the major way for humans to lose metabolic heat in hot 

35 weather is evaporative cooling (sweating),8, 9 the efficiency of which anti-correlates with hu-

36 midity. In particular, the inclusion of humidity is necessary for assessing heat stress in the 

37 tropics, the warmest and the most humid places on the Earth. 

38 The importance of humid heat has been increasingly recognized.10, 11 Studies have shown 

39 that increased humidity with temperature following the Clausius-Clapeyron relationship can 

40 worsen summer heat stress in the tropics,12, 13 while other work has noticed a reduction 

41 in either relative humidity14 or specific humidity15 on the hottest days (not limited to the 

42 tropics). Given the possibility that humidity can interact with temperature in extreme heat, 

43 it is necessary to better quantify and improve our mechanistic understanding for the control 

44 of humid heat. 

45 Here, we use the extreme wet-bulb temperature (TW), an integrated temperature-humidity 
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46 metric for heat stress (see Methods). TW by definition is the lowest temperature that hu-

man skin can be cooled to through evaporation of sweat. Therefore, the closer TW is to 

the upper limit of human skin temperature (around 35◦C), the more intolerable the heat is, 

with a survival limit of TW=35◦C16 (Note that high TW values below this survival limit 

47 

48 

49 

50 also have adverse health impact). Furthermore, TW is a major component in the wet-bulb 

51 globe temperature (WBGT; See Methods)17 which is the standard metric for workplace heat 

52 stress. In this paper, we argue that the regional extreme TW in the tropics is mainly con-

53 trolled by robust atmospheric dynamics that have been established previously,18–21 rather 

54 than local processes that are of more uncertainty. Therefore, tropical extreme TW can be 

55 robustly projected on regional scales under global warming. 

56 Global climate model projections 

57 Fig. 1a shows the projections of extreme TW (TWmax) and extreme temperatures (Tmax) 

58 by 22 global climate models (Table S1) from the Coupled Model Intercomparison Project 

59 phase 5 (CMIP5)22 under the Representative Concentration Pathway 8.5 (RCP 8.5) emission 

60 scenario (Note that TWmax and Tmax mostly refer to the annual maximum of daily mean 

61 values in this paper, and refer to the annual maximum of 3-hourly values when specifically 

62 stated). The multi-model mean of Tmax averaged over tropical land within 20◦S-20◦N warms 

63 faster than the tropical mean temperature. However, TWmax closely follows the tropical 

64 mean warming, similar to an earlier finding using an atmospheric model coupled to a slab 

65 ocean.16 These results also hold when analysing 3-hourly data that resolve the diurnal cycle 

66 from two models (GFDL-CM3 and IPSL-CM5A-LR) (Fig. 1b,c). 
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Figure 1: TWmax and Tmax trends in climate models under RCP 8.5. a, Multi-model-

mean time series of the tropical-mean (20◦S-20◦N) temperature (T ; cyan), land-mean Tmax 

(red), and land-mean TWmax (blue). b and c, The same as a but using the annual-maximum 

3-hourly values for Tmax and TWmax for two individual models. d and e, Multi-model-mean 

location-specific Tmax and TWmax trends normalized by T trends. 

67 Figs. 1d,e show Tmax and TWmax trends for all locations normalized by the tropical mean 

68 max 

69 1.0◦C to 2.3◦C for each 1◦C of tropical mean warming (Fig. 1d) consistent with previous 
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70 findings. In contrast, we find that increases of TWmax has no significant land-ocean contrast 

71 ranging from 0.8◦C to 1.3◦C for each 1◦C of tropical mean warming (Fig. 1e). Using the 

72 annual-maximum 3-hourly TW for TWmax does not change this result (Fig. S1). 
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Figure 2: Model agreement on regional TWmax projections. Multi-model means (lines) 

and spreads (2.5-97.5th percentiles; shading) for regional Tmax (red) and TWmax (blue) as 

a function of the tropical mean warming are shown for four regions, namely a Amazon 

rainforest, b Maritime Continent, c Indian Peninsula, and d Sahel (Only land data within 

the black frames on the maps are sampled). The dashed black lines indicate the 1:1 ratio. 

73 The spatially uniform TWmax trend (Fig. 1e) is not a cancellation of errors among 

74 different models. Instead, all models show good agreement on TWmax trend, even down to 
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75 regional scales. Fig. 2 shows the model spread (2.5-97.5th percentiles) of Tmax and TWmax 

projections for four selected regions that have caught substantial attention in the literature, 76 

77 namely the Amazon rainforest, the Maritime Continent, the Indian peninsula, and the Sahel. 

78 Projected Tmax warming has large spread among models, which is especially prominent in 

79 the Amazon rainforest, consistent with earlier analysis.5 However, for regional TWmax, all 22 

80 climate models project a close to 1:1 ratio with the tropical mean warming. Using the annual 

81 maximum of 3-hourly TW does not change this result (Fig. S2). Intriguingly, the model 

82 spread of Tmax tends to grow with the amplitude of the projected warming (pronounced for 

83 the Amazon rainforest and the Maritime Continent), whereas the model spread of TWmax 

84 does not show evident growth within the range of simulated warming (roughly 4◦C). That 

85 the inter-model spread is much less for TWmax projections than for Tmax is also true for other 

86 tropical land regions (Fig. S3). 

87 To summarize, global climate models predict that TWmax will increase roughly uniformly 

88 in the tropics by about 1◦C for each 1◦C of tropical mean warming. Models show wide spread 

89 on regional Tmax projections but agree very well upon regional TWmax. 

90 Theoretical support 

91 For a theoretical projection of TWmax, we argue that tropical atmospheric dynamics exert a 

92 strong, tropics-wide control on local TWmax. This control is through the functional relation-

93 ship between TW and moist static energy (MSE; Fig. S4) which is a variable regulated by 

94 atmospheric dynamics. In the tropics, the free-tropospheric temperature is roughly uniform 

95 in the horizontal as a result of the weak effect of the Earth’s rotation. This horizontally 

7 



96 uniform temperature, which is determined by the near-surface MSE in regions of deep con-

vection, sets the upper bound for MSE at all locations. Indeed, the maximum near-surface 97 

98 MSE is roughly uniform within 20◦S-20◦N (even more uniform than the time-mean MSE; 

99 Fig.S5a,b), and the spatial pattern of TWmax closely follows the uniformity of the maximum 

100 MSE (Fig. S5c). As this upper bound for near-surface MSE and, equivalently, for TW is 

101 a common one over land or over ocean,21 we expect that changes in TWmax should also be 

102 roughly equal over land and over ocean under global warming: 

ΔTWmax,Land ≈ ΔTWmax,Ocean (1) 

103 Eq. (1) thus provides a handle on TWmax over land which is challenging to predict due to 

104 various land types and land processes, as a theoretical projection for TWmax over ocean can 

105 be made relatively easily. Near the ocean surface, air is close to saturation and TW changes 

106 are approximately equal to temperature changes (exactly equal when air is saturated), and 

107 ΔTWmax,Ocean is thus approximately equal to the change in the warmest SSTs. Therefore, 

108 1◦C of ΔTWmax,Land is accompanied by 1◦C of warming of the warmest SSTs according to 

109 Eq. (1). Furthermore, the area dominance of the ocean and the relatively constant shape 

110 of SST histogram under global warming (Fig. S6) together result in a 1:1 correspondence 

111 between warming of the warmest SSTs and the tropical mean temperature (While there is 

112 potential for differences between changes in these relatively warm SSTs and the tropical 

mean SST,23–25 
113 we find these differences to be small enough that they do not undermine the 

114 theoretical considerations here). We thus expect ΔTWmax,Land roughly equals the tropical 

115 mean warming. 

116 Global climate models shown in Figs. 1, 2 are consistent with the above theoretical 

8 



117 considerations. For each 1◦C of tropical mean warming, models on average give 1.05 ◦C 

of ΔTWmax,Land, 0.93◦C of ΔTW ◦
max,Ocean, and 0.91 C of the warmest-quartile-mean SST 118 

119 increase, all close to 1◦C. 

120 The non-local control of TWmax by the warmest SSTs seems to be at odds with the 

121 perception that these extreme events are driven by rare local meteorology, and this contro-

122 versy deserves some clarification. While TWmax events are driven by local processes, the 

123 potential magnitude of TWmax is largely set by the uniform free tropospheric temperature. 

124 The effectiveness of this non-local control is evident in the uniformity of TWmax increases in 

125 Fig. 1d and the good agreement across models in Fig. 2, neither of which can be explained 

126 by the heterogeneity of local processes. Moreover, the existence of such a non-local control 

127 within the tropics also explains why the tropics are consistently warm and humid, but the 

128 highest TW and WBGT are observed in the subtropics.13, 26, 27 These considerations thus 

129 support the picture that the magnitude of ΔTWmax across tropical land regions is set by the 

130 warmest SSTs and not local processes or the spatial pattern of SST. 

131 Observational evidence 

132 From 1979 to 2018, the tropical (20◦S-20◦N) land mean Tmax trend has a 95% confidence 

133 interval of 0.24-0.31◦C/decade, which is almost three times of the tropical mean warming of 

134 0.08-0.12◦C/decade based on ERA-Interim reanalysis28 (Fig. 3a). TWmax has a trend of 0.05-

135 0.10◦C/decade, very similar to the tropical mean warming, and the interannual variabilities 

136 of the two are highly correlated with a correlation coefficient of 0.85 (Fig. 3a). Using the 

137 annual-maximum 3-hourly TW from ERA-Interim yields very similar anomalies, though the 
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Figure 3: TWmax in observations and reanalysis data. a, Time series and corresponding 

linear trends of tropical mean temperature (T ; solid cyan), land-mean Tmax (red), land-mean 

TWmax from stations (solid blue) and ERA-Interim (dashed blue), and the warmest-quartile-

mean SST from HadISST (dashed cyan) for 1979-2018 (20◦S-20◦N). The confidence intervals 

for the linear trends represent 95% significance assuming that the detrended annual data 

points are independent. b, Linear regression slopes of local TWmax onto T in the interannual 

variabilities (linear trends removed) from ERA-Interim for 1979-2018. Regions where TWmax 

and T are not correlated on a 95% significance level are hatched. c. Histograms of regression 

slopes of local TWmax onto T (linear trends removed) for 1979-2005 in ERA-Interim (black 

solid) and models (blue solid), and for the global warming simulations in models (orange 

dashed). The same histogram for non-detrended global warming simulations (Fig. 1e) is 

also shown (orange solid). Shading indicates the 25-75th percentiles of models. 

10 



138 longterm trend is smaller (Fig. S7). Furthermore, station measurements of TW provided 

by HadISD29 (see Methods; Fig. S8) show that TWmax averaged over tropical stations is 139 

140 highly correlated with that from ERA-Interim and has a similar trend of 0.05-0.10◦C/decade 

141 (Fig. 3a). The consistency of reanalysis data with station observations and the theory lends 

142 support to the quality of the reanalysis data over tropical land. 

143 The warmest-quartile-mean SST (the average of the top 25% of monthly SST at all grid 

144 points within each year) from HadISST30 is highly correlated with land-mean TWmax and 

145 has a similar trend of 0.08-0.12◦C/decade (Fig. 3a). Satellite SST observations and station 

146 TW observations are largely independent, and the very good consistency in their extreme 

147 values lends strong support to the aforementioned argument that TWmax over land is coupled 

148 to the warmest SSTs. Strong El Niño events have the potential of warming the warmest 

149 SSTs and, as a result, affect TWmax over land (e.g., 1998 in Fig. 3a). 

150 Location-specific evaluation of long-term TWmax trends for the observations suffers from 

151 the smallness of the warming signal, but interannual variability of SST provides room for 

152 testing the 1:1 relationship with TWmax. Regression slopes of TWmax (ERA-Interim) onto 

153 the tropical mean temperature (linear trends removed) is relatively uniform over most of 

154 the land regions within 20◦S-20◦N (Fig. 3b) with a mode value close to 1 (Fig. 3c). This 

155 relationship loosens in the subtropics (indicated by the hatching in Fig. 3b), consistent 

156 with the latitudinal range where the theory works.21 That the Andes and the southern edge 

157 of the Sahara have much higher TWmax sensitivity does not violate the proposed theory, 

158 as climatological TWmax in those regions is too low to trigger convection and thus not 

159 constrained by the aforementioned mechanism. The standard deviation of these slopes in 

160 the reanalysis is larger than that for the global warming simulations shown in Fig. 1e (Fig. 
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161 3c). A likely explanation is that the spatial pattern of TWmax can change in the interannual 

variability and such a spatial rearrangement can cause a spread in the regression slopes but 162 

163 does not affect the tropical averages shown in Fig. 3a. Indeed, global climate models also 

164 show a similar spread of TWmax trends under historical radiative forcing, and the removal of 

165 longterm trends in the global warming simulations for the same set of models also result in a 

166 similar spread (Fig. 3c). Therefore, regional TWmax trends diagnosed from reanalysis data 

167 over the past 40 years are consistent with global climate models. Also for similar reasons, 

168 we do not expect every station to give the same TWmax trend either. 

169 While we do not attempt to formulate an attribution statement for the TWmax trend over 

170 land seen in Fig. 3a, we note that the tight relationship in the overall trend as well as higher 

171 frequency variability strongly suggests that any attribution statements for the tropical mean 

172 temperature or SST can also be applied to TWmax. 

173 Implications for the future climate 

174 Consistency of model results with the theory and observations lends strong support to the 

175 capability of global climate models in properly simulating regional TWmax increases. In a 

176 1.5◦C warmer world, the projected 66 per cent confidence interval (equivalent to IPCC’s 

177 “likely range”) for TWmax increases across all tropical land regions (20◦S-20◦N) is 1.33-

178 1.49◦C, consistent with the simulated tropical mean warming of ∼1.4◦C in a 1.5◦C warmer 

179 climate (Fig. 4). On the other hand, projected Tmax increases have a wider distribution, the 

180 absolute (relative) standard deviation of which is 3.7 (1.8) times of that of TWmax increases. 

181 The reduction in uncertainty is more pronounced for regions where Tmax projections are most 
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Figure 4: Uncertainty of Tmax and TWmax projection in a 1.5◦C warmer world 

(land between 20◦S-20◦N). Distributions of model projected TWmax increases (blue) and 

Tmax increases (red) under RCP 8.5 at 1.5◦C of global mean warming are shown. The 

distributions are constructed by linearly regressing local Tmax and TWmax increases onto 

global mean warming and taking the regression values at 1.5◦C of global mean warming. 

Solid lines show the average distribution of all models and the shading indicates the 25-75th 

percentiles across models. 

182 uncertain. For example, in the Amazon rainforest and the Maritime Continent (Fig. 2), the 

183 absolute (relative) uncertainty of Tmax increases is around 4 (2.5) times of that of TWmax 

184 increases. 

185 Our results imply that curtailing global mean warming will have a proportional effect on 

186 regional TWmax in the tropics. The maximum 3-hourly TW (ERA-Interim) ever experienced 

187 in the past 40 years by 99.98% of the land area within 20◦S-20◦N is below 33 ◦C. Therefore, a 

188 1.5◦C or 2◦C warmer world will likely exempt the majority of the tropical area from reaching 
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189 the survival limit of 35◦C. However, there exists little knowledge on safety thresholds for 

W besides the survival limit,11 and 1◦C of TW increase could have adverse health impact 190 T

191 equivalent to that of several degrees of temperature increase. TW will thus have to be 

192 better calibrated to health impact before wider societal implementation. Nonetheless, the 

193 confidence in TWmax projection provided in this work still raises the confidence in projections 

194 of other calibrated heat stress metrics that accounts for TW, such as the WBGT. 
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268 Methods 

Wet-bulb temperature (TW). TW is thermodynamically defined as the temperature 269 

270 that an air parcel would have if cooled adiabatically to saturation at constant pressure by 

271 evaporation of water into it, all latent heat being supplied by the parcel. This process 

272 is enthalpy conserving, therefore cpT + Lq = cpTW + Lqsat(TW), where T and q are the 

273 temperature and the specific humidity of an environmental air parcel.31 TW is empirically 

274 defined as the temperature read from the wet-bulb thermometer which is a balance between 

275 diffusion of sensible heat from the environment to the saturated surface and the latent heat 

276 the other way around. Here we adopt the second definition because it is more relevant for the 

277 process of evaporative cooling of sweat. The two definitions give the same result due to the 

278 coincidence that the diffusivities of sensible and latent heat are the same. TW is calculated by 

279 solving the following equation using Newton’s iteration: cpT + Lq = cpTW + �Lesat(TW)/ps, 

280 where T , q, and ps are temperature, specific humidity, and pressure of the surface-air air, � 

281 is the molecular mass ratio of water vapor and air. 

282 Wet-bulb globe temperature (WBGT). WBGT evaluates the heat stress to which 

283 a person is exposed used by workers, athletes, and military. It is defined as WBGT = 

284 0.7TW + 0.3Td (or WBGT = 0.7TW + 0.2Tg + 0.1Td to take solar insolation into account), 

285 where TW is the wet-bulb temperature, Tg is the globe thermometer temperature, and Td is 

286 the dry-bulb temperature (or actual air temperature). 

287 Station data. Station data from HadISD are selected based on the following procedure: 

288 For each station, we first scan though TW measurements for each day and only take the daily 

289 averages of those days containing at least 4 measurements. Then, for the years containing 
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290 more than 300 daily-mean TW, the annual maximum TW is taken. In the end, stations 

ith at least 20 valid annual-maximum TW values are included in this paper which end up 291 w

292 to 293 stations (Fig. S8). For those stations, the average TW is subtracted for each station, 

293 then the anomalies are averaged among all stations as is shown in Fig. 3. 

294 Daily-mean and 3-hourly TW from CMIP5 models. CMIP5 models provide 

295 surface-air temperature and specific humidity on daily and 3-hourly frequency but not surface 

296 pressure. Therefore we interpolate monthly surface pressure piece-wisely to daily frequency 

297 for daily TW calculation and ignore the diurnal cycle in surface pressure for 3-hourly TW 

298 calculation. The error thus induced in TW is estimated to be less than 0.3◦C. 
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304 on Coupled Modelling and climate modeling groups can be accessed at https://esgf-node. 

305 llnl.gov/projects/cmip5. ERA-Interim data provided by European Centre for Medium-

306 range Weather Forecast (ECMWF) can be accessed at https://www.ecmwf.int/en/forecasts/ 
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